
Argonne wins R&D 100 Award
July 11, 2005
Advances in technology ranging from help for victims of Parkinson's disease is likely with award-winning research at the U.S. Department of Energy's Argonne National Laboratory and its partners. Argonne's research accomplishment has won the prestigious R&D 100 Awards, given to the world's top 100 scientific and technological innovations.
Argonne was involved in developing battery chemistry and materials for the microstimulator pictured above. The lithium-ion battery is the smallest cylindrical, rechargeable battery ever made.The bion microstimulator, trademarked and manufactured by Advanced Bionics Corporation, is a miniature, self-contained, rechargeable implantable neurostimulator. It is designed to treat a wide variety of diseases, including incontinence, chronic headaches, peripheral pain, angina, and epilepsy.
An estimated 50 million Americans suffer from debilitating conditions that may benefit from treatment with microstimulators. The bion implant represents a new generation of implantable technologies, designed to be placed in the body near affected muscles or nerves through minimally invasive surgery. The microstimulator is designed to stimulate viable nerves and muscles to prevent muscles from deteriorating and to help restore nerve and muscle function.
The fully integrated device measures 27.5 millimeters by 3.2 millimeters and weighs less than one gram, making it a fraction of the size of conventional implantable neurostimulation devices. Developing a microstimulator this size that would also be safe and effective required presented enormous engineering challenges to the team.
Argonne's researchers on the project, Khalil Amine, Bookeun Oh, Ilias Belharouak, Qingzheng Wang and Donald Vissers, were primarily involved in tackling the problem of developing battery chemistry and materials.
The key to the battery's success is an advanced lithium-ion chemistry that provides a calendar life significantly greater than commercially available lithium batteries. Previous batteries for medical microelectronics are large, have short lives and typically are not rechargeable.
Silicon polymers were first studied by researchers at the University of Wisconsin. For the past few years, Argonne and the university, working with Quallion, have developed a new class of polymer electrolytes, made largely of silicon-oxygen chains, that exhibit extraordinary conductivity and safety properties.
Other developers are Jeff Greiner, Curt Hafner, Kelly McClure, Matt Haller, Todd Whitehurt, Carla Mann and Alfred Mann of Advanced Bionics; Joe Schulman, Dan Dell and John Gord of Alfred Mann Foundation; Hisashi Tsukamoto of Quallion LLC; and Robert West of the Organosilicon Research Center at the University of Wisconsin.
An estimated 50 million Americans suffer from debilitating conditions that may benefit from treatment with microstimulators. The bion implant represents a new generation of implantable technologies, designed to be placed in the body near affected muscles or nerves through minimally invasive surgery. The microstimulator is designed to stimulate viable nerves and muscles to prevent muscles from deteriorating and to help restore nerve and muscle function.
The fully integrated device measures 27.5 millimeters by 3.2 millimeters and weighs less than one gram, making it a fraction of the size of conventional implantable neurostimulation devices. Developing a microstimulator this size that would also be safe and effective required presented enormous engineering challenges to the team.
Argonne's researchers on the project, Khalil Amine, Bookeun Oh, Ilias Belharouak, Qingzheng Wang and Donald Vissers, were primarily involved in tackling the problem of developing battery chemistry and materials.
The key to the battery's success is an advanced lithium-ion chemistry that provides a calendar life significantly greater than commercially available lithium batteries. Previous batteries for medical microelectronics are large, have short lives and typically are not rechargeable.
Silicon polymers were first studied by researchers at the University of Wisconsin. For the past few years, Argonne and the university, working with Quallion, have developed a new class of polymer electrolytes, made largely of silicon-oxygen chains, that exhibit extraordinary conductivity and safety properties.
Other developers are Jeff Greiner, Curt Hafner, Kelly McClure, Matt Haller, Todd Whitehurt, Carla Mann and Alfred Mann of Advanced Bionics; Joe Schulman, Dan Dell and John Gord of Alfred Mann Foundation; Hisashi Tsukamoto of Quallion LLC; and Robert West of the Organosilicon Research Center at the University of Wisconsin.

This is just one of personal accomplishments.
ReplyDelete